Docs | All | Real | Category | PDF | DataSet | Plot | Container | Misc | Aux | User

RooFit Toolkit for Data Modeling
#include "RooAcceptReject.hh"


class description - source file - inheritance tree (.pdf)

class RooAcceptReject : public TNamed, public RooPrintable

Inheritance Chart:

void addEventToCache() const RooArgSet* nextAcceptedEvent() const public:
RooAcceptReject(const RooAbsReal& func, const RooArgSet& genVars, const RooAbsReal* maxFuncVal = 0, Bool_t verbose = kFALSE) RooAcceptReject(const RooAcceptReject&) virtual ~RooAcceptReject() void attachParameters(const RooArgSet& vars) static TClass* Class() const RooArgSet* generateEvent(UInt_t remaining) const Double_t getFuncMax() virtual TClass* IsA() const Bool_t isValid() const Bool_t isVerbose() const virtual void Print(Option_t* options = "0") const virtual void printToStream(ostream& os, RooPrintable::PrintOption opt = Standard, TString indent = ) const void setVerbose(Bool_t verbose = kTRUE) virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b)

Data Members

RooArgSet* _cloneSet RooAbsReal* _funcClone const RooAbsReal* _funcMaxVal RooArgSet _catVars RooArgSet _realVars Bool_t _verbose Bool_t _isValid Double_t _maxFuncVal Double_t _funcSum UInt_t _realSampleDim UInt_t _catSampleMult UInt_t _minTrials UInt_t _totalEvents UInt_t _eventsUsed RooRealVar* _funcValStore RooRealVar* _funcValPtr RooDataSet* _cache TIterator* _nextCatVar TIterator* _nextRealVar static const UInt_t _maxSampleDim static const UInt_t _minTrialsArray

Class Description

 A class description belongs here...

RooAcceptReject(const RooAbsReal &func, const RooArgSet &genVars, const RooAbsReal* maxFuncVal, Bool_t verbose) : TNamed(func), _cloneSet(0), _funcClone(0), _funcMaxVal(maxFuncVal), _verbose(verbose)
 Initialize an accept-reject generator for the specified distribution function,
 which must be non-negative but does not need to be normalized over the
 variables to be generated, genVars. The function and its dependents are
 cloned and so will not be disturbed during the generation process.


void printToStream(ostream &os, PrintOption /*opt*/, TString /*indent*/) const

void attachParameters(const RooArgSet& vars)
 Reattach original parameters to function clone

const RooArgSet* generateEvent(UInt_t remaining)
 Return a pointer to a generated event. The caller does not own the event and it
 will be overwritten by a subsequent call. The input parameter 'remaining' should
 contain your best guess at the total number of subsequent events you will request.

const RooArgSet* nextAcceptedEvent()
 Scan through events in the cache which have not been used yet,
 looking for the first accepted one which is added to the specified
 container. Return a pointer to the accepted event, or else zero
 if we use up the cache before we accept an event. The caller does
 not own the event and it will be overwritten by a subsequent call.

void addEventToCache()
 Add a trial event to our cache and update our estimates
 of the function maximum value and integral.

Double_t getFuncMax()
 Generate the minimum required number of samples for a reliable maximum estimate

Inline Functions

                 Bool_t isValid() const
                   void setVerbose(Bool_t verbose = kTRUE)
                 Bool_t isVerbose() const
                   void Print(Option_t* options = "0") const
                TClass* Class()
                TClass* IsA() const
                   void ShowMembers(TMemberInspector& insp, char* parent)
                   void Streamer(TBuffer& b)
                   void StreamerNVirtual(TBuffer& b)
        RooAcceptReject RooAcceptReject(const RooAcceptReject&)
Last CVS Update: v 1.35 2005/06/20 15:44:47 wverkerke Top
Copyright © 2000-2005 University of California, Stanford University

Page maintained by Wouter Verkerke and David Kirkby Logo